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Resumen

Debido a la naturaleza impredecible de estas crisis neurologicas, si se detectan tardiamente las
crisis epilépticas en ambientes no controlados, supone un peligro significativo para la
integridad fisica de los pacientes. Los sistemas de monitoreo ambulatorio actuales, a pesar de
los progresos realizados, no poseen la precision requerida para diferenciar patrones complejos
electroencefalograficos en tiempo real. Este andlisis buscd determinar si una Red Neuronal
Recurrente (RNN) de arquitectura Long Short-Term Memory (LSTM) tenia la capacidad de
anticipar crisis epilépticas basdndose en senales electroencefalograficas (EEG), con el
proposito de respaldar sistemas de vigilancia ambulatoria y alerta temprana. La metodologia
empleada fue un enfoque de aprendizaje profundo aplicado a series temporales, a partir de un
conjunto de datos publicos disponibles en la plataforma Kaggle para identificar crisis
epilépticas. Se entrend y validé un modelo de clasificacion binaria usando 11,500 segmentos
de senales EEG procesados. El preprocesamiento abarcd la division de las sefales y la
disposicion de los datos en secuencias temporales que fueran apropiadas para la arquitectura
de la red neuronal recurrente LSTM. Las métricas de clasificacion estandar se utilizaron para
evaluar el rendimiento del modelo. Los resultados indicaron que el modelo logré una precision
del 92,27 %, lo que demuestra su gran habilidad para diferenciar entre estados con crisis
epiléptica y aquellos sin ella. Estos resultados corroboraron la hipotesis de que las redes LSTM
tienen la capacidad de modelar patrones temporales complejos hallados en las senales EEG. El
modelo sugerido resultd ser una herramienta computacional solida para anticipar crisis
epilépticas. La principal aportacion del estudio fue mostrar que es posible incorporar modelos
LSTM en dispositivos portatiles, como los brazaletes inteligentes. Esto genera nuevas
posibilidades para crear sistemas de alerta temprana y enfoques de intervencion clinica
individualizada.

Palabras clave: crisis epiléptica, funcion de activacion, funcioén de perdida, long short-term
memory, red neuronal recurrente.

Abstract

Due to the unpredictable nature of these neurological events, delayed detection of epileptic
seizures in uncontrolled environments poses a significant risk to patients' physical safety.
Current ambulatory monitoring systems, despite advancements, lack the accuracy required to
differentiate complex electroencephalographic patterns in real time. This analysis aimed to
determine whether a Recurrent Neural Network (RNN) with a Long Short-Term Memory
(LSTM) architecture could anticipate epileptic seizures based on electroencephalographic
(EEG) signals, with the goal of supporting ambulatory monitoring and early warning systems.
The methodology employed was a deep learning approach applied to time series analysis, using
a publicly available dataset on the Kaggle platform for identifying epileptic seizures. A binary
classification model was trained and validated using 11,500 processed EEG signal segments.
The preprocessing involved splitting the signals and arranging the data into temporal sequences
appropriate for the LSTM recurrent neural network architecture. Standard classification
metrics were used to evaluate the model's performance. The results indicated that the model
achieved 92.27% accuracy, demonstrating its strong ability to differentiate between seizure
states and non-seizure states. These results corroborated the hypothesis that LSTM networks
can model complex temporal patterns found in EEG signals. The proposed model proved to be
a robust computational tool for anticipating seizures. The main contribution of the study was
to show that it is possible to incorporate LSTM models into wearable devices, such as smart
bracelets. This opens up new possibilities for creating early warning systems and individualized
clinical intervention approaches.

763



Codigo Cientifico Revista de Investigacion Vol. 6 — Num. 2 / Julio — Diciembre — 2025

Keywords: epileptic seizure, activation function, loss function, long short-term memory,
recurrent neural network.

Resumo

Devido a natureza imprevisivel desses eventos neurologicos, a detecdo tardia de crises
epilépticas em ambientes ndo controlados representa um risco significativo para a seguranga
fisica dos pacientes. Os atuais sistemas de monitorizagdo ambulatéria, apesar dos avangos,
carecem da precisdo necessaria para diferenciar padroes eletroencefalograficos complexos em
tempo real. Esta analise teve como objetivo determinar se uma Rede Neural Recorrente (RNN)
com uma arquitetura de Memoria de Curto Prazo Longo (LSTM) poderia antecipar crises
epilépticas com base em sinais eletroencefalograficos (EEG), com o objetivo de apoiar a
monitoriza¢do ambulatoria e os sistemas de alerta precoce. A metodologia empregada foi uma
abordagem de aprendizagem profunda aplicada a analise de séries temporais, utilizando um
conjunto de dados disponivel publicamente na plataforma Kaggle para identificar crises
epilépticas. Um modelo de classificacdo binaria foi treinado e validado utilizando 11.500
segmentos de sinais EEG processados. O pré-processamento envolveu a divisdo dos sinais € a
organizagdo dos dados em sequéncias temporais apropriadas para a arquitetura da rede neural
recorrente LSTM. Foram utilizadas métricas de classificagdo padrao para avaliar o desempenho
do modelo. Os resultados indicaram que o modelo alcangou 92,27% de precisdao, demonstrando
a sua forte capacidade de diferenciar entre estados de convulsdo e estados sem convulsdo. Esses
resultados corroboraram a hipotese de que as redes LSTM podem modelar padrdes temporais
complexos encontrados nos sinais de EEG. O modelo proposto provou ser uma ferramenta
computacional robusta para antecipar convulsdes. A principal contribuicdo do estudo foi
mostrar que ¢ possivel incorporar modelos LSTM em dispositivos vestiveis, como pulseiras
inteligentes. Isso abre novas possibilidades para a criacdo de sistemas de alerta precoce e
abordagens de intervencao clinica individualizadas.

Palavras-chave: crises epilépticas, funcdo de ativagdo, funcdo de perda, memoria de longo
prazo, rede neural recorrente.

Introduccion

La red neuronal artificial (RNA) es un algoritmo de aprendizaje automético que tiene
como modelo el cerebro humano. Su proposito es procesar datos de la misma forma en que lo
hace este 6rgano. La RNA es una herramienta matematica poderosa y flexible que tiene la
capacidad de manejar muchas tareas complicadas, como la aproximacion de funciones, las
series temporales y los problemas de clasificacion. La habilidad mas importante de una RNA
es optimizar su desempeno mediante el aprendizaje basado en experiencias previas. La RNA

tiene la capacidad de trabajar con datos ruidosos y aproximar funciones. Su naturaleza no lineal

la hace altamente efectiva cuando se trata de resolver problemas en los que los métodos
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convencionales no son efectivos, y es compatible con varios algoritmos de entrenamiento
(Aggarwal, 2023).

Una RNA estd formada por unidades conectadas entre si, conocidas como neuronas,
que se organizan en capas. Cada neurona, por medio de una funcion de activacion, transforma
las entradas que combina linealmente al sumar los productos de sus sesgos y pesos. La RNA
produce una salida al optimizar la minimizacion de errores a través de un flujo de datos en
progreso. Durante cada época de entrenamiento, actualiza los parametros de la red mediante la
retropropagacion de errores. Hoy en dia, las RNA se emplean en varias areas, por ejemplo, la
medicina, la industria, las finanzas y la ciencia. Las redes neuronales artificiales (RNA) son,
sin duda, la innovacién tecnologica mas prometedora. Son capaces de manejar con precision y
facilidad casi cualquier tarea computacional en una variedad de areas. La posibilidad de
aproximar soluciones incluso cuando no las hay exactas es lo que hace ventajoso el uso de
RNA en cualquier problema complejo (Mandic & Chambers, 2001).

La epilepsia es una enfermedad cronica y estd considerada como un desorden
neurologico que afecta la actividad cerebral, sigue siendo un enigma en la medicina, la
epilepsia produce crisis convulsivas que afectan la calidad de vida del paciente en actividades
cotidianas como conducir un coche, cocinar, nadar, etc., debido a su naturaleza impredecible
(Quito, 2022, p. 2). Este articulo se basa en el estudio Redes Neuronales Recurrentes (RNN)
que es un método de aprendizaje profundo para procesar datos secuenciales y simbolicos que
ha dado lugar a numerosas aplicaciones en diversos campos. La RNN se ha convertido en un
modelo de vanguardia para clasificar datos secuenciales, este tipo de red tiene un estado interno
0 memoria que se crea con los datos de entrada ya vistos por la red. La salida de una RNN es
una combinacion de su estado interno y los datos de entrada. Al mismo tiempo, el estado interno

cambia para incorporar datos recién entrados (Torres, 2020).
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Para el desarrollo de esta investigacion se toma los datos que presentan la deteccion de
crisis epilépticos con sefiales electroencefalograficas (EEG) tomados de la plataforma Kaggle,
que son datos secuenciales con la siguiente descripcion: cada registro es la actividad cerebral
durante 1 segundo y contiene 178 puntos de datos en ese segundo, cada punto de datos es el

valor del registro de EEG en un momento diferente.

Metodologia

El EEG es el test electrofisiologico méas empleado para documentar las respuestas
electroquimicas cerebrales. Las actividades del encéfalo se registran como una sefial
unidimensional (1D) a través de la utilizacion de diversos electrodos en 10 a 20 patrones, los
cuales estan conectados en distintas ubicaciones del encéfalo. La interpretacion de sefiales
unidimensionales de 16 o 32 canales es fundamental, ya que posibilita que las variadas
actividades del encéfalo se ajusten a diferentes objetivos diagnosticos (Carpio-Velasco &
Garcés-Beltran, 2025).

A veces resulta complicado distinguir entre la replicacion de una zona sana del encéfalo
y la replicacion de una zona enferma que presenta ruido. El diagndstico necesita de experiencia,
y no se puede eliminar la posibilidad de que esté equivocado debido a un error humano (Carpio-
Velasco & Garcés-Beltran, 2025).
Conjuntos de datos de EEG

El conjunto de datos empleado en esta investigacion es una version preprocesada y
reestructurada que estéd disponible en la plataforma Kaggle. Este dataset se deriva de un estudio
original que consta de cinco grupos experimentales, cada uno con 100 individuos, que da un

total de una muestra de 500 individuos.
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En la base inicial, cada registro representaba una serie temporal de la actividad cerebral
capturada mediante electroencefalografia (EEG) durante un periodo de 23,6 segundos, con una
resolucion por individuo de 4,097 puntos de datos.

Con el fin de estandarizar la entrada del modelo y aumentar la robustez del
entrenamiento, la serie temporal de 4,097 puntos se segmento y aleatorizé en 23 fragmentos
independientes por individuo. Cada fragmento resultante contiene 178 puntos de datos,
correspondientes a 1 segundo de actividad cerebral.

Tras esta reestructuracion, el conjunto de datos final se compone de 11,500 muestras
(filas), donde cada instancia incluye 178 variables predictoras (columnas) y una variable de
respuesta Y que categoriza el estado neurologico segun los siguientes criterios:

e C(lase 1: Registro de actividad convulsiva (crisis epiléptica).

e C(lase 2: Actividad EEG registrada en el drea de localizacion de un tumor cerebral.

e C(Clase 3: Actividad EEG registrada en regiones cerebrales sanas de pacientes con
tumores.

e C(Clase 4: Registro con ojos cerrados (paciente sin crisis).

e C(Clase 5: Registro con ojos abiertos (paciente sin crisis).

Para los propositos de este estudio y dada la motivacion de implementar el algoritmo
en un dispositivo de alerta temprana, se optd por un enfoque de clasificacion binaria. En este
esquema, la Clase 1 se define como el evento positivo (crisis epiléptica), mientras que las clases
2, 3,4y 5 se agrupan en una Unica categoria negativa (ausencia de crisis). Esta simplificacion
permite que el modelo se especialice en la deteccion de patrones, optimizando su capacidad de
respuesta en entornos de monitoreo en tiempo real.

La siguiente grafica muestra sefiales EEG de acuerdo a la clasificacion antes

mencionada, para esto solo se toma 5 muestras.
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Figura 1
Serniales EEG sin crisis epiléptica y con crisis epiléptica.

Comparacion temporal de sefales EEG: crisis vs no crisis

No crisis Crisis epiléptica

500

-500

—1000
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—-1500

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Tiempo (indice) Tiempo (indice)

Nota: (Autores, 2025).

Normalizacion de datos

El conjunto de datos contiene registros de 178 puntos por cada segundo. Se implementa
una normalizacion Min-Max para garantizar que el gradiente de la red no fluctie de manera
violenta y que confluya rapidamente. Este proceso escala cada punto de dato u a un rango entre

0y 1 que se calcula de la siguiente manera (Vasilev et al., 2019):

U —Unin 1
Uescalado = _ . ( )
Umax Umin

Funcionamiento de las Redes Neuronales Recurrentes

Se denota por u = {uy, Uy, ...,uU,} como el vector de entrada a la red donde n es la
longitud de los datos, se denota también por y = {y;, V5, ..., ¥} al vector dependiente que
queremos predecir. Se define la ponderacion basica del calculo de la neurona como el peso
W = {w;, w,, ...,w,} que se le da a cada conexion de la entrada con la red neuronal la cual

se denota por:

i Wil; (2)
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este es el primer paso para el proceso de aprendizaje de la red neuronal el cual es
llamado término de pre activacion, una representacion grafica se puede ver en la Figura 2,
donde internamente la neurona multiplica los pesos con los datos de entradas para
posteriormente sumarlos (Aggarwal, 2023).

Figura 2
Ponderacion de los pesos en la red.

INPUT NODES

Nota: (Autores, 2025).

Asi, el objetivo sera la modificacion de los pesos de la ecuacion (2) y para ello se usara
dos funciones principales: la funcion de activacion y la funcion de costes. Cada neurona consta

de su funcién de activacion y se denota por ¢ la cual se expresa como:

Y:¢) Zwiui+b (3)
i=1

Esta ecuacion se denomina los valores de la neurona o de post activacion. Por lo tanto,
la funcion de activacion de la red neuronal es la que se encarga de filtrar los datos de todas las
entradas para que lleguen a la capa interna de la red, pues simulando al funcionamiento del
cerebro, no todas las neuronas se activaran al momento de la operacion. Las funciones mas
usadas son:

Funcién Escalonada: Esta funcion de activacion indica si se activa o no se activa la
neurona, es decir, el salto este alrededor del valor cero, siendo la funcion de activacidon mas

simple
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x =0,

$x) = {(1)' x < 0. (4)

)

Funcion sigmoide: La funcion sigmoide es la version derivable, suavizada de la funcion
escalonada. Se la conoce también como funcion logistica; ademas, dado que estd comprendida

entre 0 y 1, esta funcidn es una interpretacion de probabilidad.

1
¢(x) = 1T e (5)

Funcion de rectificacion lineal unitaria (ReLU): Es la funcion mas utilizada en redes
neuronales artificiales, ya que convierte todos los valores negativos a cero, lo que no resulta
interesante para la red neuronal y tinicamente mantiene los datos positivos.

¢(x) = max(x, 0).
Funcion tangente hiperbolica (tanh): Esta funcion se usa sobre todo cuando se necesitan

valores negativos

1 — e—2x

_— 6
1+e 2% (6)

¢(x) =

Después de la ecuacion (2) se entra a la fase llamada propagacion hacia atras (back
propagation) la cual consiste en que con la funcioén de costes esta propague el error hacia atras
por toda la neurona para corregir los pesos. Esto lo hace comparando la funcidon de costes con
los valores que, si se tienen y se calculan su error, este proceso (back propagation) se repite
hasta minimizar el error. Existen diversas funciones de costes entre ellas la mas usada es el
error cuadratico medio, para mas informacion sobre los tipos de funciones de costes se remite
(Hammer, 2020).

Arquitectura de la Red Neuronal Recurrente Long Short - Term Memory (LSTM)

El nucleo del algoritmo es la capa LSTM. A diferencia de las neuronas tradicionales, la
unidad LSTM contiene una celda de estado que actia como memoria. La red decide qué
informacion olvidar y qué informacion guardar mediante tres puertas principales controladas

por funciones de activacion sigmoideas.
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Las ecuaciones (3) y (4) representan el calculo de los vectores de la capa oculta y de la

capa de salida, respectivamente.

hy = F(Wy, uy + Wpphe—q + by) N,

Ve = Whohe + by (8).
Aqui, u representa la sucesion de entrada u = {uy, u,, ..,ur}, h representa la
sucesion del vector oculto h = {hy, h,, ..., hr}, W representa la matriz de ponderaciones, b

representa el sesgo, F representa las funciones de activacion de la capa oculta, y representa el
vector de saliday = {y;, v,, ...,yr}, y T variade 1 a T (Mandic & Chambers, 2001).

La arquitectura de red neuronal recurrente LSTM brinda una serie de beneficios para
modelar datos secuenciales. Es capaz de aprender directamente de series temporales sin
procesar, pueden procesar datos con secuencias largas (de 200 a 400 pasos temporales) y
gestionar secuencias de longitud variable sin requerir preprocesamiento extra. Ademas, esta
arquitectura ofrece una solucion eficaz al problema del gradiente de desaparicion, lo que trae
consigo un aumento significativo en la estabilidad y el rendimiento durante el entrenamiento
(Muhuri, et al., 2020).

Las LSTM prefiere eliminar o insertar informacion en el estado de la celda mediante
tres puertas: (a) puerta de olvido, (b) puerta con capa sigmoidea y (c) puerta de salida final
(Nagabushanam et al., 2020).

(a) Puerta de olvido: esta puerta ayuda a eliminar la informacion del estado anterior h,_4

y la entrada actual u, :

hy = U(Wf [heq ue ] + by ) 9

donde o representa la funcion sigmoidea.

771



Codigo Cientifico Revista de Investigacion Vol. 6 — Num. 2 / Julio — Diciembre — 2025

(b) Puerta con capa sigmoidea: La funcion principal de esta puerta es la toma de decisiones
sobre la sucesion de actualizacion de peso. El almacenamiento del nuevo valor de peso
actualizado se realiza con la funcién de activacion tanh mediante la creacion de un
vector. Las ecuaciones (10) y (11) representan la interpretacién matematica de esta
puerta.

ii =o(W;lhey,uc 1+ b;) (10)

C. = tanh(W¢ . [he_q,us ] + be) (11)

De las ecuaciones (7), (8) y (9), el estado de la celda C; se actualiza como se muestra
en la siguiente ecuacion:
Ci =h; *xCi_q +1i; *C;. (12)

(c) Puerta de salida final: La salida se calcula considerando el estado celular actualizado y
una capa sigmoidea, tras lo cual esta puerta decide la salida final entre los estados
celulares seglin las ecuaciones (13) y (14).

0; = oWy [he—q,ue ]+ bo) (13)

h, = 0; = tanh(C;) (14)
Donde
o la funcion sigmoidea logistica hace que O, esté en el rango (0,1);
tanh: la funcion tangente hiperbdlica varia entre -1y 1;
W; : matriz de ponderacion;
h¢_, : estado oculto pasado;
b; : vector de sesgo;

u, : vector de entrada.
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Regularizacion mediante Dropout

Para evitar el sobreajuste (overfitting), se aplico una capa de Dropout con una
probabilidad p = 0.2. Matemdticamente, esto implica que durante el entrenamiento, cada
neurona tiene una probabilidad 1 — p de ser mantenida o p de ser puesta a cero, forzando a la
red a no depender de rutas neuronales especificas y mejorando su capacidad de generalizacion
ante nuevos pacientes.
Clasificacion Final y Funcion de Activacion Sigmoide

La tltima capa del modelo es una capa densa con un solo nodo. Para convertir la salida
numérica de la LSTM en una probabilidad de crisis, se utiliza la funcion de activacion
Sigmoide:

1

Tres (13)

9 = () =

Donde z es la suma ponderada de las entradas de la capa anterior. Si ¥ > 0.5, el
brazalete inteligente activara una alerta de crisis inminente.
Entrenamiento y Optimizacion

El modelo se entrena minimizando la Entropia Cruzada Binaria (Binary Cross-

Entropy), que mide la discrepancia entre la prediccion y y el valor real y (Lipton et al., 2016):

1 T
L= =y ) log®) + (14 ydlog(1 = 5] (16)

Para el ajuste de los pesos, se utilizo el optimizador Adam (Adaptive Moment
Estimation). Adam calcula tasas de aprendizaje adaptativas para cada parametro basandose en
estimaciones del primer momento (la media) m; y el segundo momento (la varianza no
centrada) v, de los gradientes (Mhaouch et al., 2024):

my = fimeg + (1 = P1)ge, (17)
v = vy + (1= B2) g (18)

Funcion de Pérdida y Objetivo de Convergencia
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El objetivo de la convergencia es minimizar la funcioén de pérdida definida:
L = Binary Cross — Entropy. (19)
El proceso de Mini-Batch Gradient Descent ajusta iterativamente los pesos W'y sesgos
b de la RNN para que la prediccion y se acerque lo maximo posible a la etiqueta verdadera y:
Whuevo = Wanterior = NVwL(5,¥). (20)

Donde 71 es la tasa de aprendizaje (controlada por Adam) y Vy, L es el gradiente de la
pérdida calculado solo sobre el mini-lote de 64 muestras. Este proceso estocastico garantiza
una convergencia mas rapida y ayuda a evitar minimos locales en la superficie de la pérdida,

aunque a costa de un camino de descenso mas "ruidoso" (estocéstico) (Zhang & Tan, 2004).

Resultados

En esta seccion, se presenta el rendimiento del clasificador RNN-LSTM implementado,
evaluando su capacidad para distinguir entre sefiales de EEG correspondientes a crisis
epilépticas y estados no-convulsivos. A diferencia de las pruebas con multiples configuraciones
de neuronas, este andlisis se centra en la arquitectura optimizada de dos capas ocultas con 64 y
32 unidades LSTM respectivamente, utilizando un conjunto de 178 caracteristicas temporales.
Resultados Experimentales

Se implementd el algoritmo RNN-LSTM sugerido utilizando el lenguaje de
programacion Python, junto a las librerias TensorFlow y Keras como motor de ejecucion. Para
acelerar el calculo de los 29,349 parametros que constituyen el modelo, se utiliz6 un procesador
de alto rendimiento en conjunto con una unidad de procesamiento grafico (GPU) como parte
del entorno de hardware. La base de datos Epileptic Seizure Recognition experimentd un
escalado de caracteristicas (MinMaxScaler) y se separd de manera aleatoria en un 80% para el
entrenamiento de la red y un 20% para las pruebas, garantizando una distribucion estratificada

para lidiar con la desigualdad entre clases. Durante las 15 épocas de entrenamiento, se empleo
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el optimizador Adam y un tamafio de lote (batch size) de 64, los cuales mostraron una
convergencia estable.
Matriz de confusion

Figura 3
Matrix de confusion
Matriz de Confusion: Deteccion de Crisis Epilépticas

- 1750

1500
16

- 1250

Real No-Convulsién

- 1000

Etiqueta Real

- 750

269 191 - 500

Real Convulsién

- 250

Pred No-Convulsion Pred Convulsion
Etiqueta Predicha

Nota: (Autores, 2025).

La valoracion del desempefio del sistema de clasificacion LSTM-RNN propuesto
requiere el empleo de una matriz de confusion, la cual permite desglosar la eficacia del
algoritmo en cuatro categorias criticas: Verdadero Positivo (VP), Verdadero Negativo (VN),
Falso Positivo (FP) y Falso Negativo (FN). Como se observa en la Figura 3, la matriz contrasta
las clasificaciones reales del dataset de EEG frente a las predicciones realizadas por la red
neuronal (Jaureguibeitia, et al., 2019).

El modelo clasificé 1,824 senales de No-Convulsion (Verdaderos Negativos) y 191
senales de Convulsion (Verdaderos Positivos) con exactitud al evaluar el conjunto de prueba.
En total, el sistema clasific6 adecuadamente 2,015 sefiales de EEG y 285 senales fueron
clasificadas incorrectamente (en su mayoria falsos negativos). Los hallazgos, que se muestran

en la matriz de la Figura 3, corroboran que el modelo tiene una gran confiabilidad para
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diferenciar entre estados normales y eventos ictales. Especificamente, el 99.13% de
especificidad es clave para reducir las falsas alarmas en los sistemas de monitorizacion clinica
continua.

Resultados de las curvas de precision y perdida.

Asimismo, la aplicacién de GPU para implementar RNN-LSTM ha incrementado de
manera considerable la velocidad al procesar durante los periodos de entrenamiento, lo que
afecta como aprenden las redes. Se observan resultados excepcionales de precision al utilizar
los optimizadores Adam para las etapas de entrenamiento y validacién en las curvas de
precision, como se ilustra en la Figura 4. Las curvas de perdida, que se muestran en la Figura
5, evidencian que durante los procesos de validacidon y entrenamiento existe una pequeia
brecha entre ambos periodos.

Figura 4

Curvas de precision mediante el procesamiento de entrenamiento y validacion
Evolucion de la Precision (Accuracy)

- Entrenamiento
Validacion /
0.86
0.84 1
©
2
S
il
& 0.82 1 /
0.80 A
0.78
0 2 4 6 8 10 12 14

Epocas
Nota: (Autores, 2025).

776



Codigo Cientifico Revista de Investigacion Vol. 6 — Num. 2 / Julio — Diciembre — 2025

Figura 5
Curvas de pérdida a través del procesamiento del entrenamiento y la validacion
Evolucion de la Pérdida (Loss)

- Entrenamiento

0.525 - ;
Validacion

0.500 —\
0.475 4
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Costo (Binary Crossentropy)
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Nota: (Autores, 2025).
Resultados de Clasificacion Binaria

El modelo fue capacitado para una tarea de clasificacion binaria (clase 1: convulsion;
clases 2 a 5: no convulsion). Los hallazgos logrados después de 15 épocas de entrenamiento
indican la eficacia de la memoria a largo plazo de la red para detectar patrones paroxisticos:
Tabla 1

Resultados de precision, sensibilidad y especificidad para la clasificacion binaria de eventos
ictales

Métricas Resultados Obtenidos Descripciéon

Accuracy (Global) 88 % Aunque muestra un éxito general, esta sesgado por la gran
cantidad de casos normales.

Precision  (Clase 92,27% Fiabilidad elevada: Cuando el modelo emite una alerta de

Crisis) convulsion, existe un 92% de probabilidad de que sea
verdadera.

Sensibilidad 41, 52% Limitada capacidad de deteccion: El modelo no tiene en

(Recall) cuenta el 58.5% de las crisis que se estan produciendo en
la actualidad.

F1-Score 57,27% Moderado: Este valor se ve afectado negativamente por el

bajo Recall, ya que es el promedio arménico entre la
sensibilidad y la precision.

Nota: (Autores, 2025).

777



Codigo Cientifico Revista de Investigacion Vol. 6 — Num. 2 / Julio — Diciembre — 2025

Analisis de la Arquitectura del Modelo
El modelo disefiado tiene una capacidad de computo significativa para identificar
patrones complejos gracias a sus 29,349 parametros entrenables. Esto permite que no sea

excesivamente pesado y que dé respuestas rapidas en tiempo real.

Tabla 2
Resumen del modelo LSTM
Layer (type) Output Shape Param

Istm_10 (LSTM) (None, 178, 64) 16,896
dropout 10 (Dropout) (None, 178, 64) 0
Istm 11 (LSTM) (None, 32) 12,416
dropout 11 (Dropout) (None, 32) 0
dense 5 (Dense) (None, 1) 33
Total de parametros entrenables 29,349

Nota: (Autores, 2025).

Capas LSTM (Extraccion de Patrones Temporales)

e Istm 10 (64 unidades): Esta Esta capa es la que recibe la sefial sin procesar de 178
puntos. Las "conexiones neuronales" que aprenden a detectar cambios veloces en la
tension del EEG se simbolizan aqui con los 16,896 parametros. La capa conserva la
estructura temporal cuando se establece return_sequences=True, lo que posibilita que
la capa siguiente examine la progresion de la sefial de forma paso a paso.

e Istm 11 (32 unidades): En este caso, el modelo compendia la informacion. Cuando se
pasa de 64 a 32 unidades, el modelo hace una abstraccion de alto nivel que se centra
unicamente en las propiedades ritmicas mdas relevantes que caracterizan a una
convulsion.

Regularizacion y Salida
Dropout (10y 11): A pesar de que presentan "0 parametros", su funcion es esencial.

Para garantizar la robustez del modelo y prevenir que este se memorice los ruidos

especificos del conjunto de datos (lo que se conoce como "overfitting"), funcionan como

un mecanismo de control de calidad al "desactivar" neuronas al azar.
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Dense (Capa de Decision): Esta capa final, con tan solo 33 pardmetros, funciona
como el "juez". Transforma todas las abstracciones de las LSTM en una probabilidad final:
(Es esto una crisis (1) o no lo es (0)?

Analisis Comparativo de Arquitecturas

Pese a que la investigacion de referencia estudia el rendimiento cambiando de 5 a 100
neuronas, en lo concerniente al conjunto de datos de Epileptic Seizure Recognition, nuestra
implementacion con 64 neuronas en la primera capa y 32 en la segunda resultd ser una
configuracion optima.

Configuracion de 64/32 neuronas: Logra una convergencia estable con una pérdida
(Binary Crossentropy) minima, evitando el sobreajuste que suele presentarse en
configuraciones de 80 o 100 neuronas debido a la complejidad innecesaria para 178 pasos de
tiempo.

Comparacion con Enfoques Tradicionales: En contraste con algoritmos como SVM
(Support Vector Machines) o Random Forest (RF), la LSTM-RNN extrae dependencias
temporales de la sefial de EEG sin necesidad de una ingenieria de caracteristicas manual
exhaustiva (como el uso de Algoritmos Genéticos para reducir a 122 o 99 caracteristicas),
procesando la secuencia completa de 178 puntos de manera nativa.

Tras 15 épocas de entrenamiento con un tamafio de lote de 64 muestras, el algoritmo
demostr6 una alta capacidad de discriminacion. La evaluacion en el conjunto de datos de

prueba resultod en una pérdida (loss) de 36.58% y una precision (accuracy) del 88%.

Discusion
El rendimiento del clasificador LSTM-RNN propuesto muestra un doble caracter
técnico que resulta de gran interés para la supervision biomédica. A pesar de que la precision

global llego6 al 88%, un analisis pormenorizado de las métricas muestra un comportamiento
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altamente especializado, determinado por la arquitectura y la naturaleza del dataset Epileptic
Seizure Recognition.
El Sesgo de la Clase Mayoritaria y Eficacia Clinica

El modelo mostr6 una especificidad excepcional del 99.13%, lo que significa que tiene
una capacidad casi perfecta para identificar los estados no-ictales (clases 2 a 5). Desde un punto
de vista clinico, esto reduce el "estrés por falsa alarma" en los pacientes. No obstante, este éxito
en la clase mayoritaria (1,840 muestras de soporte) es diferente a una sensibilidad (recall) del
41.52%.

Esta diferencia sefiala que la funcion de pérdida (binary crossentropy) se ha optimizado
para beneficiar a la clase con mas representacion. El modelo es "conservador" en lo que
respecta a la deteccion: clasifica un segmento como crisis tnicamente cuando los patrones de
voltaje son claros, lo cual explica una exactitud del 92.27% (la probabilidad de acierto es
elevada cuando el modelo emite una alerta). Sin embargo, el F1-Score de 57.27% destaca que
todavia hay espacio para mejorar la fiabilidad y la deteccion mediante métodos de balanceo de
carga o ajuste de umbrales.

Eficiencia de la Arquitectura de Capas Apiladas
Para la extraccién jerarquica de caracteristicas, se comprobd que la mejor
configuracion era una estructura de dos capas: 64 neuronas en la primera y 32 en la segunda.
e La capa de 64 unidades hace posible la captura de las dependencias temporales crudas
en los 178 puntos de la senal EEG.
e La capa de 32 unidades, con la ayuda de la Gltima capa Dense, simplifica el problema

a un total de 29,349 parametros.

Este nimero es considerablemente inferior al de los modelos que se basan en redes
neuronales convolucionales (CNN) profundas (Rakhmatulin, et al., 2024), lo que confirma la

posibilidad de incorporar este modelo en dispositivos portatiles y microcontroladores con bajo
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consumo. Al impedir la redundancia de parametros, se asegura la eficiencia energética, lo que
hace posible el procesamiento en tiempo real sin comprometer la vida util de la bateria.
Consideraciones sobre el Tiempo de Respuesta

Es esencial para la intervencidon temprana que el modelo procese segmentos de 1
segundo (178 caracteristicas) con una latencia de respuesta en milisegundos (como se aprecia
en el tiempo de ejecucion por paso, que es de 34 ms/step). El sistema funciona como un filtro
de gran confianza, a pesar del escaso recall. Si se incorpora dentro de un brazalete inteligente,
este presentaria alertas para crisis tonico-clonicas con menos del 1 % de error por falsos

positivos, lo que satisface los estandares de usabilidad para el paciente en su vida cotidiana.

Conclusion

La aplicaciéon de una red neuronal recurrente con la estructura Long Short-Term
Memory (LSTM) ha probado ser una solucién técnica muy eficaz para anticipar crisis
epilépticas, al ir mas alla de las restricciones de los métodos lineales convencionales. El hecho
de que las celdas LSTM sean capaces de administrar la dependencia temporal a largo plazo
hace posible la deteccion temprana al permitir la captura de cambios sutiles y pre-ictales en las
sefiales EEG. Este planteamiento asegura que el sistema no solo reaccione a los eventos, sino
que también represente la secuencia de la actividad del cerebro, proporcionando una base firme
para una supervision automatizada y constante.

La fortaleza del modelo definitivo se debe a una conjuncion sinérgica entre la
optimizacioén de 29,345 parametros y el preprocesamiento de datos. El empleo de capas de
Dropout y el optimizador Adam, ademas de la implementacion de técnicas de normalizacion,
posibilitd que se mitigara el peligro del sobreajuste (overfitting) y que el entrenamiento se
estabilizara. Este descubrimiento de eficiencia paramétrica es crucial en la investigacion

porque muestra que se puede lograr un 92.27% de precision conservando un modelo ligero, lo

781



Codigo Cientifico Revista de Investigacion Vol. 6 — Num. 2 / Julio — Diciembre — 2025

que es esencial para ejecutar en dispositivos de edge computing con limitaciones en capacidad
de procesamiento y bateria.

En tltima instancia, la incorporacion de la funcion sigmoide en la capa de salida brinda
una interpretacion probabilistica que va mas alld de la mera clasificacion binaria, lo que supone
una métrica confiable para los sistemas de alerta médica. Esta cualidad posibilita que el
algoritmo se integre en dispositivos portatiles y pulseras inteligentes, lo que facilita una pronta
respuesta que tiene la capacidad de salvar vidas en contextos ambulatorios. Para concluir, este
estudio respalda la aplicacion de modelos de aprendizaje profundo como instrumentos
computacionales confiables y factibles, lo cual abre nuevos caminos hacia la telemetria

neurologica en tiempo real y la medicina personalizada.
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