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Resumen 
Debido a la naturaleza impredecible de estas crisis neurológicas, si se detectan tardíamente las 
crisis epilépticas en ambientes no controlados, supone un peligro significativo para la 
integridad física de los pacientes. Los sistemas de monitoreo ambulatorio actuales, a pesar de 
los progresos realizados, no poseen la precisión requerida para diferenciar patrones complejos 
electroencefalográficos en tiempo real. Este análisis buscó determinar si una Red Neuronal 
Recurrente (RNN) de arquitectura Long Short-Term Memory (LSTM) tenía la capacidad de 
anticipar crisis epilépticas basándose en señales electroencefalográficas (EEG), con el 
propósito de respaldar sistemas de vigilancia ambulatoria y alerta temprana. La metodología 
empleada fue un enfoque de aprendizaje profundo aplicado a series temporales, a partir de un 
conjunto de datos públicos disponibles en la plataforma Kaggle para identificar crisis 
epilépticas. Se entrenó y validó un modelo de clasificación binaria usando 11,500 segmentos 
de señales EEG procesados. El preprocesamiento abarcó la división de las señales y la 
disposición de los datos en secuencias temporales que fueran apropiadas para la arquitectura 
de la red neuronal recurrente LSTM. Las métricas de clasificación estándar se utilizaron para 
evaluar el rendimiento del modelo. Los resultados indicaron que el modelo logró una precisión 
del 92,27 %, lo que demuestra su gran habilidad para diferenciar entre estados con crisis 
epiléptica y aquellos sin ella. Estos resultados corroboraron la hipótesis de que las redes LSTM 
tienen la capacidad de modelar patrones temporales complejos hallados en las señales EEG. El 
modelo sugerido resultó ser una herramienta computacional sólida para anticipar crisis 
epilépticas. La principal aportación del estudio fue mostrar que es posible incorporar modelos 
LSTM en dispositivos portátiles, como los brazaletes inteligentes. Esto genera nuevas 
posibilidades para crear sistemas de alerta temprana y enfoques de intervención clínica 
individualizada. 
Palabras clave: crisis epiléptica, función de activación, función de perdida, long short-term 
memory, red neuronal recurrente. 
 
 
Abstract 
Due to the unpredictable nature of these neurological events, delayed detection of epileptic 
seizures in uncontrolled environments poses a significant risk to patients' physical safety. 
Current ambulatory monitoring systems, despite advancements, lack the accuracy required to 
differentiate complex electroencephalographic patterns in real time. This analysis aimed to 
determine whether a Recurrent Neural Network (RNN) with a Long Short-Term Memory 
(LSTM) architecture could anticipate epileptic seizures based on electroencephalographic 
(EEG) signals, with the goal of supporting ambulatory monitoring and early warning systems. 
The methodology employed was a deep learning approach applied to time series analysis, using 
a publicly available dataset on the Kaggle platform for identifying epileptic seizures. A binary 
classification model was trained and validated using 11,500 processed EEG signal segments. 
The preprocessing involved splitting the signals and arranging the data into temporal sequences 
appropriate for the LSTM recurrent neural network architecture. Standard classification 
metrics were used to evaluate the model's performance. The results indicated that the model 
achieved 92.27% accuracy, demonstrating its strong ability to differentiate between seizure 
states and non-seizure states. These results corroborated the hypothesis that LSTM networks 
can model complex temporal patterns found in EEG signals. The proposed model proved to be 
a robust computational tool for anticipating seizures. The main contribution of the study was 
to show that it is possible to incorporate LSTM models into wearable devices, such as smart 
bracelets. This opens up new possibilities for creating early warning systems and individualized 
clinical intervention approaches. 
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Keywords: epileptic seizure, activation function, loss function, long short-term memory, 
recurrent neural network. 
 
 
Resumo 
Devido à natureza imprevisível desses eventos neurológicos, a deteção tardia de crises 
epilépticas em ambientes não controlados representa um risco significativo para a segurança 
física dos pacientes. Os atuais sistemas de monitorização ambulatória, apesar dos avanços, 
carecem da precisão necessária para diferenciar padrões eletroencefalográficos complexos em 
tempo real. Esta análise teve como objetivo determinar se uma Rede Neural Recorrente (RNN) 
com uma arquitetura de Memória de Curto Prazo Longo (LSTM) poderia antecipar crises 
epilépticas com base em sinais eletroencefalográficos (EEG), com o objetivo de apoiar a 
monitorização ambulatória e os sistemas de alerta precoce. A metodologia empregada foi uma 
abordagem de aprendizagem profunda aplicada à análise de séries temporais, utilizando um 
conjunto de dados disponível publicamente na plataforma Kaggle para identificar crises 
epilépticas. Um modelo de classificação binária foi treinado e validado utilizando 11.500 
segmentos de sinais EEG processados. O pré-processamento envolveu a divisão dos sinais e a 
organização dos dados em sequências temporais apropriadas para a arquitetura da rede neural 
recorrente LSTM. Foram utilizadas métricas de classificação padrão para avaliar o desempenho 
do modelo. Os resultados indicaram que o modelo alcançou 92,27% de precisão, demonstrando 
a sua forte capacidade de diferenciar entre estados de convulsão e estados sem convulsão. Esses 
resultados corroboraram a hipótese de que as redes LSTM podem modelar padrões temporais 
complexos encontrados nos sinais de EEG. O modelo proposto provou ser uma ferramenta 
computacional robusta para antecipar convulsões. A principal contribuição do estudo foi 
mostrar que é possível incorporar modelos LSTM em dispositivos vestíveis, como pulseiras 
inteligentes. Isso abre novas possibilidades para a criação de sistemas de alerta precoce e 
abordagens de intervenção clínica individualizadas. 
Palavras-chave: crises epilépticas, função de ativação, função de perda, memória de longo 
prazo, rede neural recorrente. 
 
 
Introducción  

La red neuronal artificial (RNA) es un algoritmo de aprendizaje automático que tiene 

como modelo el cerebro humano. Su propósito es procesar datos de la misma forma en que lo 

hace este órgano. La RNA es una herramienta matemática poderosa y flexible que tiene la 

capacidad de manejar muchas tareas complicadas, como la aproximación de funciones, las 

series temporales y los problemas de clasificación. La habilidad más importante de una RNA 

es optimizar su desempeño mediante el aprendizaje basado en experiencias previas. La RNA 

tiene la capacidad de trabajar con datos ruidosos y aproximar funciones. Su naturaleza no lineal 

la hace altamente efectiva cuando se trata de resolver problemas en los que los métodos 
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convencionales no son efectivos, y es compatible con varios algoritmos de entrenamiento 

(Aggarwal, 2023). 

Una RNA está formada por unidades conectadas entre sí, conocidas como neuronas, 

que se organizan en capas. Cada neurona, por medio de una función de activación, transforma 

las entradas que combina linealmente al sumar los productos de sus sesgos y pesos. La RNA 

produce una salida al optimizar la minimización de errores a través de un flujo de datos en 

progreso. Durante cada época de entrenamiento, actualiza los parámetros de la red mediante la 

retropropagación de errores. Hoy en día, las RNA se emplean en varias áreas, por ejemplo, la 

medicina, la industria, las finanzas y la ciencia. Las redes neuronales artificiales (RNA) son, 

sin duda, la innovación tecnológica más prometedora. Son capaces de manejar con precisión y 

facilidad casi cualquier tarea computacional en una variedad de áreas. La posibilidad de 

aproximar soluciones incluso cuando no las hay exactas es lo que hace ventajoso el uso de 

RNA en cualquier problema complejo (Mandic & Chambers, 2001).  

La epilepsia es una enfermedad crónica y está considerada como un desorden 

neurológico que afecta la actividad cerebral, sigue siendo un enigma en la medicina, la 

epilepsia produce crisis convulsivas que afectan la calidad de vida del paciente en actividades 

cotidianas como conducir un coche, cocinar, nadar, etc., debido a su naturaleza impredecible 

(Quito, 2022, p. 2). Este artículo se basa en el estudio Redes Neuronales Recurrentes (RNN) 

que es un método de aprendizaje profundo para procesar datos secuenciales y simbólicos que 

ha dado lugar a numerosas aplicaciones en diversos campos. La RNN se ha convertido en un 

modelo de vanguardia para clasificar datos secuenciales, este tipo de red tiene un estado interno 

o memoria que se crea con los datos de entrada ya vistos por la red. La salida de una RNN es 

una combinación de su estado interno y los datos de entrada. Al mismo tiempo, el estado interno 

cambia para incorporar datos recién entrados (Torres, 2020).  
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Para el desarrollo de esta investigación se toma los datos que presentan la detección de 

crisis epilépticos con señales electroencefalográficas (EEG) tomados de la plataforma Kaggle, 

que son datos secuenciales con la siguiente descripción:  cada registro es la actividad cerebral 

durante 1 segundo y contiene 178 puntos de datos en ese segundo, cada punto de datos es el 

valor del registro de EEG en un momento diferente. 

 

Metodología 

El EEG es el test electrofisiológico más empleado para documentar las respuestas 

electroquímicas cerebrales. Las actividades del encéfalo se registran como una señal 

unidimensional (1D) a través de la utilización de diversos electrodos en 10 a 20 patrones, los 

cuales están conectados en distintas ubicaciones del encéfalo. La interpretación de señales 

unidimensionales de 16 o 32 canales es fundamental, ya que posibilita que las variadas 

actividades del encéfalo se ajusten a diferentes objetivos diagnósticos (Carpio-Velasco & 

Garcés-Beltrán, 2025). 

A veces resulta complicado distinguir entre la replicación de una zona sana del encéfalo 

y la replicación de una zona enferma que presenta ruido. El diagnóstico necesita de experiencia, 

y no se puede eliminar la posibilidad de que esté equivocado debido a un error humano (Carpio-

Velasco & Garcés-Beltrán, 2025). 

Conjuntos de datos de EEG 

El conjunto de datos empleado en esta investigación es una versión preprocesada y 

reestructurada que está disponible en la plataforma Kaggle. Este dataset se deriva de un estudio 

original que consta de cinco grupos experimentales, cada uno con 100 individuos, que da un 

total de una muestra de 500 individuos. 
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En la base inicial, cada registro representaba una serie temporal de la actividad cerebral 

capturada mediante electroencefalografía (EEG) durante un periodo de 23,6 segundos, con una 

resolución por individuo de 4,097 puntos de datos. 

Con el fin de estandarizar la entrada del modelo y aumentar la robustez del 

entrenamiento, la serie temporal de 4,097 puntos se segmentó y aleatorizó en 23 fragmentos 

independientes por individuo. Cada fragmento resultante contiene 178 puntos de datos, 

correspondientes a 1 segundo de actividad cerebral. 

Tras esta reestructuración, el conjunto de datos final se compone de 11,500 muestras 

(filas), donde cada instancia incluye 178 variables predictoras (columnas) y una variable de 

respuesta 𝑌 que categoriza el estado neurológico según los siguientes criterios: 

• Clase 1: Registro de actividad convulsiva (crisis epiléptica). 

• Clase 2: Actividad EEG registrada en el área de localización de un tumor cerebral. 

• Clase 3: Actividad EEG registrada en regiones cerebrales sanas de pacientes con 

tumores. 

• Clase 4: Registro con ojos cerrados (paciente sin crisis). 

• Clase 5: Registro con ojos abiertos (paciente sin crisis). 

Para los propósitos de este estudio y dada la motivación de implementar el algoritmo 

en un dispositivo de alerta temprana, se optó por un enfoque de clasificación binaria. En este 

esquema, la Clase 1 se define como el evento positivo (crisis epiléptica), mientras que las clases 

2, 3, 4 y 5 se agrupan en una única categoría negativa (ausencia de crisis). Esta simplificación 

permite que el modelo se especialice en la detección de patrones, optimizando su capacidad de 

respuesta en entornos de monitoreo en tiempo real. 

La siguiente gráfica muestra señales EEG de acuerdo a la clasificación antes 

mencionada, para esto solo se toma 5 muestras. 
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Figura 1 
Señales EEG sin crisis epiléptica y con crisis epiléptica. 

 
Nota: (Autores, 2025). 

Normalización de datos 

El conjunto de datos contiene registros de 178 puntos por cada segundo. Se implementa 

una normalización Min-Max para garantizar que el gradiente de la red no fluctúe de manera 

violenta y que confluya rápidamente. Este proceso escala cada punto de dato 𝑢 a un rango entre 

0 y 1 que se calcula de la siguiente manera (Vasilev et al., 2019): 

𝑢!"#$%$&' =
𝑢	 − 𝑢()*

𝑢($+ 	− 𝑢()*
.																																		(1) 

Funcionamiento de las Redes Neuronales Recurrentes 

Se denota por  𝑢	 = 	 {𝑢,, 𝑢-, … , 𝑢*} como el vector de entrada a la red donde 𝑛 es la 

longitud de los datos, se denota también por 𝑦	 = 	 {𝑦,, 𝑦-, … , 𝑦*} al vector dependiente que 

queremos predecir. Se define la ponderación básica del cálculo de la neurona como el peso 

𝑊	 = 	 {𝑤,, 𝑤-, … , 𝑤*} que se le da a cada conexión de la entrada con la red neuronal la cual 

se denota por: 

2𝑤)𝑢) 																																														
*

).,

				(2) 
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este es el primer paso para el proceso de aprendizaje de la red neuronal el cual es 

llamado término de pre activación, una representación gráfica se puede ver en la Figura 2, 

donde internamente la neurona multiplica los pesos con los datos de entradas para 

posteriormente sumarlos (Aggarwal, 2023). 

Figura 2 
Ponderación de los pesos en la red.  

 
Nota: (Autores, 2025). 

Así, el objetivo será la modificación de los pesos de la ecuación (2) y para ello se usará 

dos funciones principales: la función de activación y la función de costes. Cada neurona consta 

de su función de activación y se denota por 𝜙 la cual se expresa como: 

𝑌	 = 	𝜙 52𝑤) 	𝑢)

*

).,

+ 𝑏	8																																																(3) 

Esta ecuación se denomina los valores de la neurona o de post activación. Por lo tanto, 

la función de activación de la red neuronal es la que se encarga de filtrar los datos de todas las 

entradas para que lleguen a la capa interna de la red, pues simulando al funcionamiento del 

cerebro, no todas las neuronas se activaran al momento de la operación. Las funciones más 

usadas son: 

Función Escalonada: Esta función de activación indica si se activa o no se activa la 

neurona, es decir, el salto este alrededor del valor cero, siendo la función de activación más 

simple   
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𝜙(𝑥) = ;1, 𝑥 ≥ 0,
0, 𝑥 < 0.																																													(4) 

Función sigmoide: La función sigmoide es la versión derivable, suavizada de la función 

escalonada. Se la conoce también como función logística; además, dado que está comprendida 

entre 0 y 1, esta función es una interpretación de probabilidad.  

𝜙(𝑥) =
1

1 + 𝑒/+ .																																																											
(5) 

Función de rectificación lineal unitaria (ReLU): Es la función más utilizada en redes 

neuronales artificiales, ya que convierte todos los valores negativos a cero, lo que no resulta 

interesante para la red neuronal y únicamente mantiene los datos positivos. 

𝜙(𝑥) = max(𝑥, 0). 

Función tangente hiperbólica (tanh): Esta función se usa sobre todo cuando se necesitan 

valores negativos 

𝜙(𝑥) =
1	 −	𝑒/-+

1 + 𝑒/-+ .																																																
(6) 

Después de la ecuación (2) se entra a la fase llamada propagación hacia atrás (back 

propagation) la cual consiste en que con la función de costes esta propague el error hacia atrás 

por toda la neurona para corregir los pesos. Esto lo hace comparando la función de costes con 

los valores que, si se tienen y se calculan su error, este proceso (back propagation) se repite 

hasta minimizar el error. Existen diversas funciones de costes entre ellas la más usada es el 

error cuadrático medio, para más información sobre los tipos de funciones de costes se remite 

(Hammer, 2020). 

Arquitectura de la Red Neuronal Recurrente Long Short - Term Memory (LSTM)  

El núcleo del algoritmo es la capa LSTM. A diferencia de las neuronas tradicionales, la 

unidad LSTM contiene una celda de estado que actúa como memoria. La red decide qué 

información olvidar y qué información guardar mediante tres puertas principales controladas 

por funciones de activación sigmoideas. 
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Las ecuaciones (3) y (4) representan el cálculo de los vectores de la capa oculta y de la 

capa de salida, respectivamente. 

 

ℎ0 = 𝐹(𝑊)1	𝑢0 +𝑊11ℎ0/, + 𝑏1)																										(7), 

 

𝑦0 = 𝑊13	ℎ0	 + 𝑏3																																																						(8). 

Aquí, 𝑢 representa la sucesión de entrada 𝑢	 = 	 {𝑢,, 𝑢-, … , 𝑢4}, ℎ representa la 

sucesión del vector oculto ℎ	 = 	 {ℎ,, ℎ-, … , ℎ4}, 𝑊 representa la matriz de ponderaciones, 𝑏 

representa el sesgo, 𝐹 representa las funciones de activación de la capa oculta, 𝑦 representa el 

vector de salida 𝑦	 = 	 {𝑦,, 𝑦-, . . . , 𝑦4}, y 𝑇 varía de 1 a T (Mandic & Chambers, 2001).  

La arquitectura de red neuronal recurrente LSTM brinda una serie de beneficios para 

modelar datos secuenciales. Es capaz de aprender directamente de series temporales sin 

procesar, pueden procesar datos con secuencias largas (de 200 a 400 pasos temporales) y 

gestionar secuencias de longitud variable sin requerir preprocesamiento extra. Además, esta 

arquitectura ofrece una solución eficaz al problema del gradiente de desaparición, lo que trae 

consigo un aumento significativo en la estabilidad y el rendimiento durante el entrenamiento 

(Muhuri, et al., 2020). 

Las LSTM prefiere eliminar o insertar información en el estado de la celda mediante 

tres puertas: (a) puerta de olvido, (b) puerta con capa sigmoidea y (c) puerta de salida final 

(Nagabushanam et al., 2020). 

(a) Puerta de olvido: esta puerta ayuda a eliminar la información del estado anterior ℎ0/,	 

y  la entrada actual 𝑢0	: 

ℎ0 = 𝜎L𝑊5	[ℎ0/,	, 𝑢0	] + 𝑏5	O																																					(9) 

donde 𝜎 representa la función sigmoidea. 
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(b) Puerta con capa sigmoidea: La función principal de esta puerta es la toma de decisiones 

sobre la sucesión de actualización de peso. El almacenamiento del nuevo valor de peso 

actualizado se realiza con la función de activación tanh mediante la creación de un 

vector. Las ecuaciones (10) y (11) representan la interpretación matemática de esta 

puerta. 

𝑖0 = 𝜎(𝑊)	[ℎ0/,	, 𝑢0	] + 𝑏)	)																																(10) 

𝐶0S = 𝑡𝑎𝑛ℎ(𝑊6	. [ℎ0/,	, 𝑢0	] + 𝑏6	)																						(11) 

De las ecuaciones (7), (8) y (9), el estado de la celda 𝐶0	 se actualiza como se muestra 

en la siguiente ecuación: 

𝐶0	 = ℎ0	 ∗ 𝐶0/,	 + 𝑖0	 ∗ 𝐶0 .																																					(12) 

(c) Puerta de salida final: La salida se calcula considerando el estado celular actualizado y 

una capa sigmoidea, tras lo cual esta puerta decide la salida final entre los estados 

celulares según las ecuaciones (13) y (14). 

𝑂0	 = 𝜎(𝑊3	[ℎ0/,	, 𝑢0	] + 𝑏3	)																							(13) 

ℎ0	 = 𝑂0	 ∗ 𝑡𝑎𝑛ℎ(𝐶0	)																																				(14) 

Donde  

𝜎: la función sigmoidea logística hace que 𝑂0	 esté en el rango (0,1);  

𝑡𝑎𝑛ℎ: la función tangente hiperbólica varía entre −1 y 1; 

𝑊)	:  matriz de ponderación; 

 ℎ0/,	: estado oculto pasado; 

 𝑏)	: vector de sesgo;  

𝑢0	: vector de entrada. 
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Regularización mediante Dropout 

Para evitar el sobreajuste (overfitting), se aplicó una capa de Dropout con una 

probabilidad 𝑝	 = 	0.2. Matemáticamente, esto implica que durante el entrenamiento, cada 

neurona tiene una probabilidad 1 − 𝑝 de ser mantenida o 𝑝 de ser puesta a cero, forzando a la 

red a no depender de rutas neuronales específicas y mejorando su capacidad de generalización 

ante nuevos pacientes.  

Clasificación Final y Función de Activación Sigmoide 

La última capa del modelo es una capa densa con un solo nodo. Para convertir la salida 

numérica de la LSTM en una probabilidad de crisis, se utiliza la función de activación 

Sigmoide: 

𝑦Y 	= 	𝜎(𝑧) = 	
1

1 + 𝑒/7 																																					(15) 

Donde 𝑧 es la suma ponderada de las entradas de la capa anterior. Si 𝑦Y 	> 	0.5, el 

brazalete inteligente activará una alerta de crisis inminente. 

Entrenamiento y Optimización 

El modelo se entrena minimizando la Entropía Cruzada Binaria (Binary Cross-

Entropy), que mide la discrepancia entre la predicción 𝑦Y y el valor real y (Lipton et al., 2016): 

𝐿 = 	−
1
𝑁2

[𝑦) log(𝑦8b) + (1 + 𝑦))log(1 −	𝑦8b)]
4

).,

																									(16) 

Para el ajuste de los pesos, se utilizó el optimizador Adam (Adaptive Moment 

Estimation). Adam calcula tasas de aprendizaje adaptativas para cada parámetro basándose en 

estimaciones del primer momento (la media) 𝑚0 y el segundo momento (la varianza no 

centrada) 𝑣0 de los gradientes (Mhaouch et al., 2024): 

𝑚0 =	𝛽,𝑚0/, + (1 − 𝛽,)𝑔0 ,																																																(17)	 

𝑣0 =	𝛽-𝑣0/, + (1 − 𝛽-)𝑔0-.																																																					(18) 

Función de Pérdida y Objetivo de Convergencia 
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El objetivo de la convergencia es minimizar la función de pérdida definida: 

𝐿 = 	𝐵𝑖𝑛𝑎𝑟𝑦	𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦.																																						(19) 

  El proceso de Mini-Batch Gradient Descent ajusta iterativamente los pesos 𝑊 y sesgos 

𝑏 de la RNN para que la predicción 𝑦Y se acerque lo máximo posible a la etiqueta verdadera 𝑦: 

W*9!:' =	W$*0!;)'; − 𝜂∇<𝐿(𝑦Y, 𝑦).																																				(20) 

Donde 𝜂 es la tasa de aprendizaje (controlada por Adam) y ∇<𝐿 es el gradiente de la 

pérdida calculado solo sobre el mini-lote de 64 muestras. Este proceso estocástico garantiza 

una convergencia más rápida y ayuda a evitar mínimos locales en la superficie de la pérdida, 

aunque a costa de un camino de descenso más "ruidoso" (estocástico) (Zhang & Tan, 2004).  

 

Resultados 

En esta sección, se presenta el rendimiento del clasificador RNN-LSTM implementado, 

evaluando su capacidad para distinguir entre señales de EEG correspondientes a crisis 

epilépticas y estados no-convulsivos. A diferencia de las pruebas con múltiples configuraciones 

de neuronas, este análisis se centra en la arquitectura optimizada de dos capas ocultas con 64 y 

32 unidades LSTM respectivamente, utilizando un conjunto de 178 características temporales. 

Resultados Experimentales 

Se implementó el algoritmo RNN-LSTM sugerido utilizando el lenguaje de 

programación Python, junto a las librerías TensorFlow y Keras como motor de ejecución. Para 

acelerar el cálculo de los 29,349 parámetros que constituyen el modelo, se utilizó un procesador 

de alto rendimiento en conjunto con una unidad de procesamiento gráfico (GPU) como parte 

del entorno de hardware. La base de datos Epileptic Seizure Recognition experimentó un 

escalado de características (MinMaxScaler) y se separó de manera aleatoria en un 80% para el 

entrenamiento de la red y un 20% para las pruebas, garantizando una distribución estratificada 

para lidiar con la desigualdad entre clases. Durante las 15 épocas de entrenamiento, se empleó 
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el optimizador Adam y un tamaño de lote (batch size) de 64, los cuales mostraron una 

convergencia estable. 

Matriz de confusión  

Figura 3 
Matrix de confusión 

 
Nota: (Autores, 2025). 

La valoración del desempeño del sistema de clasificación LSTM-RNN propuesto 

requiere el empleo de una matriz de confusión, la cual permite desglosar la eficacia del 

algoritmo en cuatro categorías críticas: Verdadero Positivo (VP), Verdadero Negativo (VN), 

Falso Positivo (FP) y Falso Negativo (FN). Como se observa en la Figura 3, la matriz contrasta 

las clasificaciones reales del dataset de EEG frente a las predicciones realizadas por la red 

neuronal (Jaureguibeitia, et al., 2019). 

El modelo clasificó 1,824 señales de No-Convulsión (Verdaderos Negativos) y 191 

señales de Convulsión (Verdaderos Positivos) con exactitud al evaluar el conjunto de prueba. 

En total, el sistema clasificó adecuadamente 2,015 señales de EEG y 285 señales fueron 

clasificadas incorrectamente (en su mayoría falsos negativos). Los hallazgos, que se muestran 

en la matriz de la Figura 3, corroboran que el modelo tiene una gran confiabilidad para 
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diferenciar entre estados normales y eventos ictales. Específicamente, el 99.13% de 

especificidad es clave para reducir las falsas alarmas en los sistemas de monitorización clínica 

continua. 

Resultados de las curvas de precisión y perdida. 

Asimismo, la aplicación de GPU para implementar RNN-LSTM ha incrementado de 

manera considerable la velocidad al procesar durante los períodos de entrenamiento, lo que 

afecta cómo aprenden las redes. Se observan resultados excepcionales de precisión al utilizar 

los optimizadores Adam para las etapas de entrenamiento y validación en las curvas de 

precisión, como se ilustra en la Figura 4. Las curvas de perdida, que se muestran en la Figura 

5, evidencian que durante los procesos de validación y entrenamiento existe una pequeña 

brecha entre ambos periodos.  

Figura 4 
Curvas de precisión mediante el procesamiento de entrenamiento y validación 

 
Nota: (Autores, 2025). 
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Figura 5 
Curvas de pérdida a través del procesamiento del entrenamiento y la validación

 
Nota: (Autores, 2025). 

Resultados de Clasificación Binaria 

El modelo fue capacitado para una tarea de clasificación binaria (clase 1: convulsión; 

clases 2 a 5: no convulsión). Los hallazgos logrados después de 15 épocas de entrenamiento 

indican la eficacia de la memoria a largo plazo de la red para detectar patrones paroxísticos: 

Tabla 1 
Resultados de precisión, sensibilidad y especificidad para la clasificación binaria de eventos 
ictales 

Métricas Resultados Obtenidos Descripción 
Accuracy (Global) 88 % Aunque muestra un éxito general, está sesgado por la gran 

cantidad de casos normales. 
Precisión (Clase 
Crisis) 

92,27% Fiabilidad elevada: Cuando el modelo emite una alerta de 
convulsión, existe un 92% de probabilidad de que sea 
verdadera. 

Sensibilidad 
(Recall) 

41, 52% Limitada capacidad de detección: El modelo no tiene en 
cuenta el 58.5% de las crisis que se están produciendo en 
la actualidad. 

F1-Score 57,27% Moderado: Este valor se ve afectado negativamente por el 
bajo Recall, ya que es el promedio armónico entre la 
sensibilidad y la precisión. 

Nota: (Autores, 2025). 
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Análisis de la Arquitectura del Modelo  

El modelo diseñado tiene una capacidad de cómputo significativa para identificar 

patrones complejos gracias a sus 29,349 parámetros entrenables. Esto permite que no sea 

excesivamente pesado y que dé respuestas rápidas en tiempo real. 

Tabla 2 
Resumen del modelo LSTM 

Nota: (Autores, 2025). 

Capas LSTM (Extracción de Patrones Temporales) 

• lstm_10 (64 unidades): Esta Esta capa es la que recibe la señal sin procesar de 178 

puntos. Las "conexiones neuronales" que aprenden a detectar cambios veloces en la 

tensión del EEG se simbolizan aquí con los 16,896 parámetros. La capa conserva la 

estructura temporal cuando se establece return_sequences=True, lo que posibilita que 

la capa siguiente examine la progresión de la señal de forma paso a paso. 

• lstm_11 (32 unidades): En este caso, el modelo compendia la información. Cuando se 

pasa de 64 a 32 unidades, el modelo hace una abstracción de alto nivel que se centra 

únicamente en las propiedades rítmicas más relevantes que caracterizan a una 

convulsión. 

Regularización y Salida 

Dropout (10 y 11):  A pesar de que presentan "0 parámetros", su función es esencial. 

Para garantizar la robustez del modelo y prevenir que este se memorice los ruidos 

específicos del conjunto de datos (lo que se conoce como "overfitting"), funcionan como 

un mecanismo de control de calidad al "desactivar" neuronas al azar. 

Layer (type) Output Shape Param 
lstm_10 (LSTM) (None, 178, 64) 16,896 
dropout_10 (Dropout)  (None, 178, 64) 0 
lstm_11 (LSTM) (None, 32) 12,416 
dropout_11 (Dropout) (None, 32) 0 
dense_5 (Dense) (None, 1) 33 
Total de parámetros entrenables  29,349 
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Dense (Capa de Decisión): Esta capa final, con tan solo 33 parámetros, funciona 

como el "juez". Transforma todas las abstracciones de las LSTM en una probabilidad final: 

¿Es esto una crisis (1) o no lo es (0)? 

Análisis Comparativo de Arquitecturas 

Pese a que la investigación de referencia estudia el rendimiento cambiando de 5 a 100 

neuronas, en lo concerniente al conjunto de datos de Epileptic Seizure Recognition, nuestra 

implementación con 64 neuronas en la primera capa y 32 en la segunda resultó ser una 

configuración optima. 

Configuración de 64/32 neuronas: Logra una convergencia estable con una pérdida 

(Binary Crossentropy) mínima, evitando el sobreajuste que suele presentarse en 

configuraciones de 80 o 100 neuronas debido a la complejidad innecesaria para 178 pasos de 

tiempo. 

Comparación con Enfoques Tradicionales: En contraste con algoritmos como SVM 

(Support Vector Machines) o Random Forest (RF), la LSTM-RNN extrae dependencias 

temporales de la señal de EEG sin necesidad de una ingeniería de características manual 

exhaustiva (como el uso de Algoritmos Genéticos para reducir a 122 o 99 características), 

procesando la secuencia completa de 178 puntos de manera nativa. 

Tras 15 épocas de entrenamiento con un tamaño de lote de 64 muestras, el algoritmo 

demostró una alta capacidad de discriminación. La evaluación en el conjunto de datos de 

prueba resultó en una pérdida (loss) de 36.58% y una precisión (accuracy) del 88%.  

 

Discusión 

El rendimiento del clasificador LSTM-RNN propuesto muestra un doble carácter 

técnico que resulta de gran interés para la supervisión biomédica. A pesar de que la precisión 

global llegó al 88%, un análisis pormenorizado de las métricas muestra un comportamiento 
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altamente especializado, determinado por la arquitectura y la naturaleza del dataset Epileptic 

Seizure Recognition. 

El Sesgo de la Clase Mayoritaria y Eficacia Clínica 

El modelo mostró una especificidad excepcional del 99.13%, lo que significa que tiene 

una capacidad casi perfecta para identificar los estados no-ictales (clases 2 a 5). Desde un punto 

de vista clínico, esto reduce el "estrés por falsa alarma" en los pacientes. No obstante, este éxito 

en la clase mayoritaria (1,840 muestras de soporte) es diferente a una sensibilidad (recall) del 

41.52%. 

Esta diferencia señala que la función de pérdida (binary crossentropy) se ha optimizado 

para beneficiar a la clase con más representación. El modelo es "conservador" en lo que 

respecta a la detección: clasifica un segmento como crisis únicamente cuando los patrones de 

voltaje son claros, lo cual explica una exactitud del 92.27% (la probabilidad de acierto es 

elevada cuando el modelo emite una alerta). Sin embargo, el F1-Score de 57.27% destaca que 

todavía hay espacio para mejorar la fiabilidad y la detección mediante métodos de balanceo de 

carga o ajuste de umbrales. 

Eficiencia de la Arquitectura de Capas Apiladas 

 Para la extracción jerárquica de características, se comprobó que la mejor 

configuración era una estructura de dos capas: 64 neuronas en la primera y 32 en la segunda. 

• La capa de 64 unidades hace posible la captura de las dependencias temporales crudas 

en los 178 puntos de la señal EEG. 

• La capa de 32 unidades, con la ayuda de la última capa Dense, simplifica el problema 

a un total de 29,349 parámetros. 

Este número es considerablemente inferior al de los modelos que se basan en redes 

neuronales convolucionales (CNN) profundas (Rakhmatulin, et al., 2024), lo que confirma la 

posibilidad de incorporar este modelo en dispositivos portátiles y microcontroladores con bajo 
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consumo. Al impedir la redundancia de parámetros, se asegura la eficiencia energética, lo que 

hace posible el procesamiento en tiempo real sin comprometer la vida útil de la batería. 

Consideraciones sobre el Tiempo de Respuesta 

Es esencial para la intervención temprana que el modelo procese segmentos de 1 

segundo (178 características) con una latencia de respuesta en milisegundos (como se aprecia 

en el tiempo de ejecución por paso, que es de 34 ms/step). El sistema funciona como un filtro 

de gran confianza, a pesar del escaso recall. Si se incorpora dentro de un brazalete inteligente, 

este presentaría alertas para crisis tónico-clónicas con menos del 1 % de error por falsos 

positivos, lo que satisface los estándares de usabilidad para el paciente en su vida cotidiana. 

 

Conclusión 

La aplicación de una red neuronal recurrente con la estructura Long Short-Term 

Memory (LSTM) ha probado ser una solución técnica muy eficaz para anticipar crisis 

epilépticas, al ir más allá de las restricciones de los métodos lineales convencionales. El hecho 

de que las celdas LSTM sean capaces de administrar la dependencia temporal a largo plazo 

hace posible la detección temprana al permitir la captura de cambios sutiles y pre-ictales en las 

señales EEG. Este planteamiento asegura que el sistema no solo reaccione a los eventos, sino 

que también represente la secuencia de la actividad del cerebro, proporcionando una base firme 

para una supervisión automatizada y constante. 

La fortaleza del modelo definitivo se debe a una conjunción sinérgica entre la 

optimización de 29,345 parámetros y el preprocesamiento de datos. El empleo de capas de 

Dropout y el optimizador Adam, además de la implementación de técnicas de normalización, 

posibilitó que se mitigara el peligro del sobreajuste (overfitting) y que el entrenamiento se 

estabilizara. Este descubrimiento de eficiencia paramétrica es crucial en la investigación 

porque muestra que se puede lograr un 92.27% de precisión conservando un modelo ligero, lo 
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que es esencial para ejecutar en dispositivos de edge computing con limitaciones en capacidad 

de procesamiento y batería. 

En última instancia, la incorporación de la función sigmoide en la capa de salida brinda 

una interpretación probabilística que va más allá de la mera clasificación binaria, lo que supone 

una métrica confiable para los sistemas de alerta médica. Esta cualidad posibilita que el 

algoritmo se integre en dispositivos portátiles y pulseras inteligentes, lo que facilita una pronta 

respuesta que tiene la capacidad de salvar vidas en contextos ambulatorios. Para concluir, este 

estudio respalda la aplicación de modelos de aprendizaje profundo como instrumentos 

computacionales confiables y factibles, lo cual abre nuevos caminos hacia la telemetría 

neurológica en tiempo real y la medicina personalizada. 
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