Código Científico Revista de Investigación Vol. 5 – Núm. 1 / Enero – Junio – 2024
1544
Grandell, L., Peltomäki, M., Back, R. J., & Salakoski, T. (2006). Why complicate things?:
introducing programming in high school using Python. In Proceedings of the 8th
Australasian Conference on Computing Education-Volume 52 (pp. 71-80). Australian
Computer Society, Inc.
https://doi.org/10.29057/icbi.v7iEspecial.4785
Kampelis, N., Tsekeri, E., Kolokotsa, D., Kalaitzakis, K., Isidori, D., & Cristalli, C. (2018).
Development of demand response energy management optimization at building and
district levels using genetic algorithm and artificial neural network modelling power
predictions. Energies, 11(11). https://doi.org/10.3390/en11113012
López, A. (2018). Fundamentos Matemáticos de los Métodos Kernel para Aprendizaje
Supervisado. 73.
Perez, D. P., Bustillos, R. S., Botto-Tobar, M., & Mora, C. M. (2021). X-Ray Images
Analysis by Medium Artificial Neural Network. Ecuadorian Science Journal, 5(1),
55–60. https://doi.org/10.46480/esj.5.1.50
Salvador, V. L., Mamaqi, X., & Bordes, J. V. (2020). Artificial intelligence: Theoretical,
formative and communicative challenges of datification. In Icono14 (Vol. 18, Issue
1). https://doi.org/10.7195/RI14.V18I1.1434
Sandoval, L. (2018). Algoritmos de aprendizaje automático para análisis y predicción de
datos. 11, 36–40.
http://www.redicces.org.sv/jspui/bitstream/10972/3626/1/Art6_RT2018.pdf
Sepúlvera, G., Vega-Alvarado, E., & Portilla-Floresa, E. A. (2019). Machine Learning para
Robots, del Entrenamiento Virtual a la Tarea Real. Pädi Boletín Científico de
Ciencias Básicas e Ingenierías Del ICBI, 7(Especial), 14–18.
R. Joaquín Amat, «Correlación lineal y Regresión lineal simple», 2016.
https://www.cienciadedatos.net/documentos/24_correl acion_y_regresion_lineal.html
(accedido feb. 26, 2021).
Talens, R. (2020). La relación entre los casos de Covid-19 y su impacto en Twitter.
Tandon, N., Mishra, B. D., Sakaguchi, K., Bosselut, A., & Clark, P. (2020). Wiqa: A dataset
for “What if...” reasoning over procedural text. EMNLP-IJCNLP 2019 - 2019
Conference on Empirical Methods in Natural Language Processing and 9th
International Joint Conference on Natural Language Processing, Proceedings of the
Conference. https://doi.org/10.18653/v1/d19-1629
Tu, Y. (2019). Machine learning. In EEG Signal Processing and Feature Extraction.
https://doi.org/10.1007/978-981-13-9113-2_15